| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • Stop wasting time looking for files and revisions. Connect your Gmail, DriveDropbox, and Slack accounts and in less than 2 minutes, Dokkio will automatically organize all your file attachments. Learn more and claim your free account.

View
 

Critical Thinking

Page history last edited by Bob-RJ Burkhart 10 years, 1 month ago

Thinking Guides Futures Wheel ... Facilitated Thinking Guide ... Scenario Thinking ... Systems Thinking

 

Critical Thinking Teaching Strategies and Classroom Techniques

Art Snacks ... Year of the Drone (UAV Ethics)


Visit Art Snacks

 

 

 

Critical thinking cannot be taught by lecturing. Critical thinking is an active process, while, for most students, listening to lectures is a passive activity. The intellectual skills of critical thinking--analysis, synthesis, reflection, etc.--must be learned by actually performing them. Classroom instruction, homework, term papers, and exams, therefore, should emphasize active intellectual participation by the student.

 

Lectures: Enhancement of critical thinking can be accomplished during lecture by periodically stopping and asking students searching and thoughtful questions about the material you have just presented, and then wait an appropriate time for them to respond. Do not immediately answer such questions yourself; leave sufficient time for students to think about their answer before they state it. If you constantly answer such questions yourself, students will quickly realize this and not respond. Learn students' names as quickly as possible and ask the questions of specific students that you call upon by name. If an individual cannot answer a question, help them by simplifying the question and leading them through the thought process: ask what data are needed to answer the question, suggest how the data can be used to answer the question, and then have the student use this data in an appropriate way to come up with an answer.

 

You may, of course, ask simple questions that merely ask students to regurgitate factual information that you have just given them in lecture. Many students have trouble with these factual questions because they are not paying attention in class, they simply have never learned how to listen to a lecture and take mental and written notes, or they don't know how to review their notes and the textbook in preparation for an exam. Perhaps the most basic type of critical thinking is knowing how to listen to a lecture actively rather than passively; many students don't know how to do this because they were never taught it and they were able to get through the educational system to their present situation--your class--without having to practice it. (A good book to read or suggest to students that they read is How to Speak, How to Listen by Mortimer J. Adler.) It is probably wise to begin asking the factual type of question so that students will realize that they have to pay attention. However, the goal of critical thinking requires that you eventually ask questions that require students to think through a cause and effect or premise and conclusion type of argument. This obliges them to reason from data or information they now possess through the lecture to reach new conclusions or understanding about the topic. For example, in chemistry, after presenting information about chemical reactions, you could ask students to describe chemical reactions that occur to them or near them everyday by the combination of commonplace chemical materials. Ask them to explain what type of reaction it is (oxidation, reduction, etc.) using whatever knowledge they possess of the reactant materials and their new knowledge of chemical reactions.

 

Dr. Dennis Huston of Rice University, winner of numerous teaching awards, recommends asking such questions in class. He complains that we teach students to be mere receivers of information from the instructor, rather than getting them to talk about and trust their own thoughts about the subject matter. Huston states that thoughtful and searching questions often have uncertain and ambiguous answers; this is more true in his area of study (literature) than in math and science, but the concept is the same. Rather than condition students to value only what the instructor says, get them to think deeply about the topic and value what they think and feel. Teach so that students think their ideas matter. Ask them to make connections and recognize patterns. They will experience a responsibility for their own education and think about what they learn and read. Students will be involved with their own learning, will feel deeply about it, and learn to value and trust their own thoughts and ideas. These recommendations are a perfect application of promoting critical thinking.

 

After lecture but before the class ends, ask students to write one-minute papers on the most significant thing they learned in class today and what single thing they still feel confused about. Dr. Huston says this is the single most important exercise you can do. You get immediate feedback about what the students are learning and what they still need to understand (technically, this is an application of what is called "classroom research" or "classroom assessment," the deliberate discovery of what and how much students are learning and of how you are teaching). He says it also improves their writing. In our present case, of course, this exercise improves critical thinking.

 

In class, encourage questions from students. Always respond postively to questions; never brush them off or belitte the questioner. Instead, praise the questioner (for example, say "Good question!" or "I bet a lot of you want to know that"). Questions from students mean they are thinking critically about what you are saying; encourage that thinking!

 

During lecture, bring in historical and philosophical information about math and science that enables students to understand that all scientific and mathematical knowledge was gained by someone practicing critical thinking in the past, sometimes by acts of great courage or tedious painstaking work in the face of seemingly insurmountable difficulties.

 

Laboratories: Many science courses have laboratories connected with them. Science laboratory exercises are all excellent for teaching critical thinking. The reasons should be obvious. Here, the student learns the scientific method by acually practicing it. This method of teaching critical thinking is so clear and obvious that it seems odd that critical thinking is not promoted more in primary and secondary education by simply beginning science instruction in the first grade and requiring that students take more science courses. You will have to decide for yourself why this isn't the case. Since laboratories automatically teach critical thinking to some degree, we will spend no more time on this topic.

 

Homework: Innumerable opportunities exist to promote critical thinking by homework assignments. For reading homework, Dr. William T. Daly recommends that you provide students the general questions you want answered before they begin reading, and insist that they organize their notes around these questions. Require that students transform the information and make it their own by requiring them to paraphrase, summarize, or outline all reading assignments. He suggests that you can grade their written efforts with oral quizes that can be structured to require abstract conceptualization and graded as students speak, for most students will prepare carefully in order to avoid failing repeatedly in public.

Comments (0)

You don't have permission to comment on this page.