The Niche for Small Residual Biomass Plants

Ulrich Bonne, Ph.D., CTO and Consultant, <u>ulrichbonne@msn.com</u>

MinneFuel, LLC, www.MinneFuel.com, in collaboration with: George Crolick, General Manager Dale Gunderson, Jack Ruff, Paul Anderson Ron Rich, President of ARI <u>rrr@atmrcv.com</u>, <u>http://www.atmrcv.com</u> James Jarvis, General Counsel

> The Minnesota Futurists Minneapolis, 23 February 2008

Problem: Global Warming and Energy Dependence

- Global warming is a fact
- Its relation to man-made CO2 emissions has been accepted
- The US imports about 1/3 of its total energy needs of ~ 110 quad Btu/year

Solution: Switch to (nuclear &) renewable energy

- The US only uses 1/10 renewable energy now
- Solar PV energy could supply total US energy needs of ~ 110 quad Btu/year on ~ 1% of its area, and yield 70x more W/acre than biofuels
- But bio-fuel ROI is ~24x higher than solar PV

MinneFuel, LLC

Envisioned Small BioFuels Plant

This is not:

- Starch conversion and fermentation
- Cellulosic biomass partial hydrolysis and fermentation to ethanol
- Biomass pyrolysis (Energy Conversion Technologies, Windsor Ontario)
- Biomass / municipal waste plasma gasification (Startech Plasma)
 But:
- Biomass gasification to producer gas >> syngas >> GTL conversion,
 - Using steam-based gasification direct or indirect?
 - Permeation, sieving or solvation ?? of syngas cleanup, and
 - Catalytic reaction to HC (Fe), ethanol (Ru) or methanol (Cu)

The challenge: Prove its technical and economic viability Could we afford automobiles if each had to be custom-assembled in our back yard?

Comparison of Fuel-from-Biomass Processes and Characteristics Alternative Liquid Fuel Processes from Cellulosic Biomass

Criteria	Corn Ethanol	BioDiesel from Veg.Oil	Cellulosic Ethanol	Pyrolsis & Refining	Gasification GTL (Large)	Gasification GTL (MinneFuel)
Technology Maturity		+	-	-	+	-
Energy Conv. Efficiency	14 %	+ 60 - 67%	+ 41 • %	25 - 50 %	+ 42 - 49 %	+ 35 - 49 %
Process Simplicity	÷.	4	-	-	-	-
Feedstock Flexibility			+	+	+	+
Product Specificity			+	-	-	-
Environmentally Friendly	-	Ŧ	-	+	-	+
Feedstock Availability	-	-	+	+	+	++
Economic Viability		+	-	-	+	+

+ is relatively better/higher/easier; - is relatively worse; listed eff. for plant conversions, excl. growing & transp.

MinneFuel, LLC

Advantages of Small vs. Large Plants

- Cost saving from "factory assembly" vs. "field assembly"
- Cost saving via "learning curve" from continuous improvement of mass production
- Have access to lower-cost, local and distributed feedstock, and benefit of shorter transport distances
- Lower-cost distribution (no middlemen)
- Mobile, no hook-ups needed to electric, water or sewer
- Provide jobs to local economy
- Less noise and local traffic congestion by large trucks hauling low-density biomass
- Lower cost of burdened labor
- Lower-cost air and water pollution control systems*

* For example, EPA stack emission limits of NOx, SOx and PM from utility plant boilers were at first only mandated for plants with outputs over 250 MWe, with impact on kWh "product" of about 5-10%. Limits for small boilers were mandated later as appropriate, when lower-cost technology became available.

MinneFuel, LLC

Envisioned Small BioFuels Plant (Forestry/Farm Scale), Rev.3

The • are gas sampling points, connected to ports of a • gas analyzer, such as the RLGA = Raman Laser Gas Analyzer by ARI.

MinneFuel, LLC

6 Ron Rich and ulrichbonne@msn.com ALTERNATIVE ENERGY FUTURES 1/18/06 by Earl C. Joseph & Hank Lederer

MinneFuel, LLC

Compare Economies of Scale: 1. Size vs. 2. Volume

1. Economies of scale are obtained as plant sizes increase. The shown empirical relation is also used to keep plant costs low in terms of \$ per installed capacity via process intensification, see M.V.Koch,

K.M.VandenBussche and R.Crisman, "Micro Instrumentation for High Throughput Experimentation and Process Intensification," Wiley-VCH, Weinheim, Germany (2007) p.50, Fig.3.5

2. High volume production reduces cost via "Learning Curve/Experience

Factor": a. http://cost.jsc.nasa.gov/learn.html

b. Stephen R. Lawrence http://leeds-faculty.colorado.edu/lawrence/Tools/Learn/LTheory.htm

MinneFuel, LLC

Labor and Burden Costs vs. Company Size

Hypothesis: Large company labor+burden rate is higher than with small companies. Why?
 Assumptions: Wealth producing workers are 1st level production, engineering, maintenance, who support (with their overhead) all layers above them Linear simple model: 5x fewer mgrs. in each successive layer, but they earn 2.6x more

Plant and Product Cost vs. Size & F.Assembl.Factor for constant # small plants or const. total production

30 Wgall y = 3,730

Modeled Small Plant Economic Feasibility:150Plants

BTL BUSINESS MODEL TO COMPUTE PLANT & FUEL COST IN \$/(GAL/Y) & \$/GAL. SMALL PLANTS

	IN	PUTS			OUTPUTS	In	Out
3	Capacity in gal/h	25	3	Ref./Small Plant size ratio	150	Q	R
4	Up-Time in h/year	6000	4	Mass prod.cost saving factor	0.0857	t	Sm
5	Ref. Plant size in gal/y	30,000,000	5	BM plant cost in \$/(gal/y)	1.924	Qr	С
6	Ref. Plant cost in \$/(gal/y)	3	6	BM plant cost in \$	384,832	Cr	Сс
7	Land cost in \$/acre	4500	7	Payment w/interest per \$/year	77,468	Ca	
8	Production of plants in #/y	9,330	8	BM feedsock in tons/y	1762	N	F
9	Fcty assembly saving factor	2.7	9	in lbs/h	587	Sf	Fh
10	Years to pay loan in years	8	10	in dense ft3/y	320,315	tL	Fv
11	Interest on loan in %/y	12	11	Yield in gal/ton (for listed % Eff)	85.1	r	Yw
12	Profit in % of fuel sales	10	12	Total cost feedstk & prd.trans.,\$/ton	7.43	Р	Cw
13	Economy of plant scale, power	0.6	13	Number of people to run plant/shift	0.497	n	Hu
14	Learning curve in %/doublg.	83	14	Cost of ethanol in \$/gal - feedstk	0.0872	L	VF
15	BM feedst.cost in \$/ton	0	15	- Plant labor ~(Q/Qr)^0.63/3, \$/gal	0.5959	Cf	VL
16	Include BM transp.cost: 0=N,1=Y	1	16	- amortization in \$/gal	0.5165	Ct	VC
17	Plant op.labor cost in \$/h/shift	30	17	- profit in \$/gal	0.1200	CL	VP
18	BM harvest in tons/acre	3.5	18	- maintenance, insur'ce, prp.tax	0.0185	Ya	Vm
19	Distribution in % of mfct. cost	20	19	- distribution	0.2676	Co	Vd
				Total in \$/gal	1.6057		V
21	BM energy conv.eff in %	35	21	- incl. BioMax25 Electr. \$/kWh	0.0251	ηE	Ve
22	BM LHV in Btu/lb	9200	22	Total ethanol produced, million gal/y	1399.5	Hb	
23	Ethanol LHV in Btu/gal	75,637	23	Total manufactg. assets in \$	7,180,970,891	He	CT
24	Ethanol density in lb/gal	6.549	24	Total number plants needed	1,072,808	ρε	Ns
25	All US waste BM, bill tons/y	1.89	25	Years to achieve 25% saturation	29	Y	t20
	Density of pell.stover in lb/ft3	11	26	Total US potential in bill.gal eth/y	161	ρ	Yb
27			27	CO2 emiss. redution of total E in %	11.8		ΔE
28	Num.Small MN plants in oper'n.	30,000	28	CO2 em.redution of gasoline E in %	35.5	n	∆Et
29	MN factory labor value add in %	30	29	Total cost of the loan in \$	619,743	Va	Ct
30	MN factory labor cost in \$/h	50	30	MN BM feedstock in million tons/y	52.9	Cf	Fa
	MN factory indiv.labor h/year	2000	31	MN fuel production in billion gal/y	4.50	tf	Qmn
32			32	MN fuel gross revenue in B\$/y	7.23		Sf
33	Cost of truck fuel in \$/gal	3	33	MN factory(val.added)sales in B\$/y	3.59	Cg	Sa
34	Time to load and unload BM, h	1	34	MN jobs - Fuel prod. + distribution	33,000	tf	Je
35	Truck BM capacity in tons	5	35	- Plant product.+ servcg.in \$/y	35,905	L	Jm
36	Trucking cost prod./feedst., ratio	0.1	36	- Average gross pay/SP-job in \$/y	90,000	Rp	f Pe
37	Truck cost + 50% interest in \$	110,000	37	3xMax.radial BM-plant dist. in miles	1.51	Cr	n ds
38	Truck life in miles	200,000	38	Truck average speed in miles/h	21.2	Z	v
39	Truck SP average speed, miles/h	20	39	Cost of feedstock transport in \$/ton	7.21	VO	Cw*
40	Truck mileage in miles/gal	4	40	Cost of product transport in \$/ton	0.21	Yr	n Cp
			TL-C	07-Plant-Business-Model, Rev. 8, U.B	Sonne, 5-Nov-07		

Not included is plant cost reduction potential of 30-50% via use of membranes

11

MinneFuel, LLC

Modeled Small Plant Economic Feasibility:150Plants

	SHORT COMPARISON OF LARG	E AND	SMALL	PLAN	ſS
	Inputs	Large	Large	Small	Small
3	Capacity in gal/h	3750	3750	25	25
4	Up-Time in h/year	6000	6000	6000	6000
5	Ref. Plant size in million gal/y	30	30	30	30
6	Ref. Plant cost in \$/(gal/y)	3	3	3	3
7	Land cost in \$/acre	4500	4500	4500	4500
8	Production of plants in #/y	1	1	150	2,000
9	Fcty assembly saving factor	1	1	2.7	2.7
10	Years to pay loan in years	8	8	8	8
11	Interest on loan in %/y	8	8	12	12
12	Profit in % of fuel sales	20	20	10	10
13	Economy of plant scale, power	0.6	0.6	0.6	0.6
14	Learning curve in %/doublg.	83	83	83	83
15	BM feedst.cost in \$/ton	30	30	0	0
16	Include BM transp.cost: 0=N,1=Y	1	1	1	1
17	Plant op.labor cost in \$/h/shift	50	50	30	30
18	BM harvest in tons/acre	3.5	3.5	3.5	3.5
19	Distribution in % of mfct. cost	80	64	20	20
20	Est. Cost of BioMax-25 kW, k\$	250	250	65	32.4
	Outputs				
1	Plant capacity cost in \$/(gal/y)	3	3	5.84	2.911
2	Fuel retail price in \$/gal	3.288	2.996	2.993	1.955
3	Electrical energy cost in ¢/kWh	26.34	26.34	6.14	3.4

Not included is plant cost reduction potential of 30-50% via use of membranes MinneFuel, LLC

Biomass Resources in Minnesota *

Table 1: Biomass Resources in Minnesota

Source of Biomass	Biomass Resources from ORNL database ¹	Biomass Resources from NREL GIS Group	Biomass Resource from 1997 ILSR Inventory	Average of all biomass resource data
	tons/year at <\$50/ton	tons/year	tons/year	tons/year
Forest Residue	874,900	-	-	874,900
Mill Residue	1,121,000	1,017,688	571,960	903,549
Agricultural Residue	11,935,896	40,709,527	22,040,438	24,895,287
Energy Crops	5,783,002	-	-	5,783,002
Urban Wood Waste	1,532,529	-	-	1,532,529
Total	21,247,327	41,727,215	22,612,398	33,989,267

¹ ORNL 1999 database: <u>http://bioenergy.ornl.gov/resourcedata/</u>

²NREL GIS database, updated with new sources of data: mill residue data are from the 2002 Timber Products Output Database by the USDA Forest Service; agricultural residue data are from the National Agricultural Statistics Service at USDA (<u>http://www.nass.usda.gov:81/ipedb/</u>)

³ILSR 1997 database:

http://www.carbohydrateeconomy.org/library/admin/uploadedfiles/Survey of Minnesotas Agricultural Residues and.html

* http://www.pca.state.mn.us/oea/p2/forum/MNbiomass-NREL.pdf Feb. 2005

"Minnesota Biomass - Hydrogen and Electricity Generation Potential. A study by the National Renewable Energy Laboratory," by NREL, Boulder, CO

MinneFuel, LLC

ulrichbonne@msn.com

13

Small Scale Universal Biomass Conversion Plants. Benefits for NE Minnesota, @ 25% Residual BM Use:

(8 mill acres corn + 6.5 mill acres SFI forests) x 3.5 tons/acre x 100 gal/ton >> 5.8 Bgal fuel. With production rate of 3,000 Plants/year & 30,000 Plants operating in Minn.x 25 gal/h >> 3.5 Bgal fuel/y. 2.8 Bgal MN use.
Revenue for NE-Minn small plant sales: 4.08 B\$/y @ 400k\$/ea
Revenue for Minn renewable eth. sales: 8.35 B\$/y @ 1.85 \$/gal
Factory Jobs NE-Minn: 12,000 jobs – plant product.& service
Small-Plant Jobs Minn: + 33,000 jobs – fuel product.& distrib.
Minn. gasoline fossil fuel displacement: 85%

Total fossil & CO2 emissions reduction: >30%. Details:

29	Num.Small MN plants in oper'n.	30,000	29	MN BM feedstock in million tons/y	52.9		n	Fa	= n * F
30	MN factory labor value add in %	30	30	MN fuel production in billion gal/y	4.50	`	Va	Qmn	= n * t * Q / 1e9
31	MN factory labor cost in \$/h	50	31	MN fuel gross revenue in B\$/y	8.35		Cf	Sf	= n * t * Q * V / 1e9
32	MN factory indiv.labor h/year	2000	32	MN factory(val.added)sales in B\$/y	1.22	1	tf	Sa	= Va/100 * N * Cc / 1e9
			33	MN jobs - Fuel prod. + distribution	33,000			Je	= n * 1.1
BM	= BioMass		34	- Plant production + servicing	12,238			Jm	= Sa / (Cf * tf) * 1e9
SP	= Small Plant		35	- Average gross pay/SP-job/y	90,000			Ре	= CL * t/2
E	= Energy		TL-07-Plant-Business-Model, Rev. 7, U.Bonne, 8-OCT-07						

MinneFuel, LLC

ulrichbonne@msn.com ¹⁴

BioMax 50 to 100 notes BioMass Generator + CHP Chipper & BioMax 5 Selective Chip Storage O2, H2,... CPC Membranes Gasifier FT Reactor & from BioMass To Steam & GenS ilo/Storag Catalyst BioMas Regeneration RLGA GenSe Porous Wall **Fuel Product** Flat-Bed Traile Storage and Distribution **ARI** Gas Analyzer **Unique Integration & Mass** & Control System **Production of Small Systems** by ??? and MinneFuel 15 MinneFuel, LLC

Components of Universal Biomass Conversion System

Developmental Equipment: Biomass Storage

168,000 ft³ 54.7 ft diam.

MinneFuel, LLC

ulrichbonne@msn.com

16

Available Equipment: ARI Raman Laser Gas Analyzer (RLGA) & Control, to Enable Efficient Plant Operation

Gas Species	Lower Limit
Hydrogen - H ₂	100 ppm
Nitrogen - N ₂	50 ppm
Oxygen - O ₂	50 ppm
Water Vapor - H ₂ O	10-50 ppm
Carbon Monoxide - CO	50 ppm
Carbon Dioxide - CO ₂	25 ppm
Organics - C _x H _v	10-50 ppm
Ammonia - NH ₃	10-50 ppm

The industrial RLGA can measure all gases important for biomass plant operation, e.g. H2, CO, CH4, CH3OH, C2H5OH, NH3, CO2, H2O, N2, O2, HCI, SO2, via sets of 8 gases from multiple ports, every 50 ms. Sample conditioning and self-cal included.

ARI Raman Laser Gas Analyzer (RLGA): Analysis of Wood Chip Gasification at NRRI

Biomass gasification test with a CPC BioMax-25 at NRRI, with a wood chip feed rate of 64 kg/h. Gas composition via ARI's 8-channel Raman LGA. The sum of the 8 measured gas conc. is <100% because H2S, HCL, Ar, P- and CHxOy gases were not included, but highlights the excellent performance of the LGA.

ARI Raman Laser Gas Analyzer (RLGA): Analysis of Wood Chip Gasification at NRRI

Biomass gasification test with a CPC BioMax-25 at NRRI, with a wood chip feed rate of 75 kg/h. Gas composition via ARI's 8-channel Raman LGA, showing high signal/noise and excellent sensitivity to NH3.

19

Operation/Design Parameters for 4 Plant Sizes

Sizes	<u>Desktop</u>	Trailer	<u>Coop</u>	<u>Central</u>
Ethanol Output in cm3/h	10			
in gal/h	0.004	10	>610	
in million gal/y		0.0876	>5.3	35 - 208
in kg/h		29.7		
in (LHV) kBtu/h	0.338	836	>51,000	
in MW	(98 W)	0.244	>15	100 - 600
Biomass Input in g/h	25			
in lbs/h dry	0.055	136	>8333	
in tons/day		1.63	>100	
in relative size	1/2473	1	>61	407 - 2440
Biomass Input flux in g/(h cm2)	10	10	10	10
Catalyst bed diameter in cm	1.8	90	700	1805 – 4421
O2 vel. for C/O=0.7, (STP)cm/s	0.83	0.83	0.83	0.83
Air vel. for C/O=0.7, (STP)cm/s	3.12	3.12	3.12	3.12
Power density of cat., in W/cm3	13	13	13	13
Output gas vel. in (900C)cm/s	5.6x3.76	5.6	5.6	5.6
Res. time in cat.bed(50%por), s	0.07	0.07	0.07	0.07
Raw (air)gasifier output in sft3/h	1	5680		
H2+CO in ft3/h		1688		

Cellulosic Biomass Conversion Plants (65% conversion)

Conclusions:

• "Desktop-size" biomass conversion demo'd by U of M (gasifiers) & PA (FT-methanol)

- A catalyst bed of 90 cm ID would process enough CLEAN biomass for10 gal/h ethanol
- Co-processing steam can widen the H2/CO from 1-1.3 to 0.9-4
- Residence time of < 70 ms is reasonable, compared to ~5 ms for a nat. gas air flame

~0.1 ms for nat. gas – O2 flame

MinneFuel, LLC

ulrichbonne@msn.com

20

Efficient Small-Plant Biomass-to-Methanol Conversion, Rev.5

MinneFuel, LLC

Concept for Gasifier w/Gas-Fired Indirect Heater, Rev.7

Composition of MinnePlant[™] Gasification Streams

Table 3. Flame Properties of Producer, Syngas and Methane Fuel Gases*											
	Produc	er Gas	Prod.Fl	ue Gas	Residua	al Produc	er Gas	Syr	ngas	Meth	ane
	Equil.	Input	Flame	Flame	Input	Flame	Flame	Input	Flame	Input	Flame
P in bar	7	7	7	1	1	1	1	1	1	1	1
Tin in C		100	100	100	100	100	100	100	100	100	100
	moles	moles	mol%	mol%	moles	mol%	mol%	moles	mol%	moles	mol%
CO	2.39	2.39	0.41	1.42	1.39	1.02	10.44	1.00	2.01		0.98
H2	4.70	4.70	0.17	0.57	2.78	0.42	4.45	2.00	0.80		0.39
CO2	0.55	0.55	10.81	11.49	0.55	12.85	17.64		9.27		8.35
H2O	1.19	1.19	22.63	25.65	1.19	27.98	53.01		21.77		18.26
O2	0.00	3.57	0.23	0.93	2.09	0.72	14.46	1.50	1.40	2.00	0.68
N2	0.00	13.65	65.75	59.94	7.97	57.01	0.00	5.74	64.75	7.65	71.34
CH4	0.00									1.00	
Tflam in C	.(844)		2075.3	2032		1944.8	2626.2		2162.2		1999.3
STANJAN	1	2	3	4	5	6	7	8	9	10	11

* Columns Tflam = Adiabatic flame temperature

TL-07-Plant-BM-sp

1: Equilibrium composition at 844°C of enough water gas for 1 mol of methanol (CH3OH)

2: Input of same composition, with air added for complete combustion at 7 bar (~ 100 psia)

3: Flame composition and temperature right after combustion with air at 7 bar

4: Same but at 1 bar; note that peak temperature is ~43°C lower than at 7 bar

5: Input same comp. as #2, except for extracting enough syngas to make 1 mole of methanol.

- 6: Flamed resid.prod. gas of #5 input comp. after combustion w/air at 1 bar. T4 T6 = ~88°C
- 7: Flamed residual p. gas of #5 comp. after comb. w/pure O2. T7-T6 = 681°C, T7 >> T4.
- 8: Input extracted syngas CO+2H2. 9. After combustion w/air. T9 T4 = 130°C, T9-T6= 217 °C

10: Input methane + air. 11: Flamed methane after combustion with air. T4 > T11 > T4

ulrichbonne@msn.com

23

MinneFuel, LLC

Developmental Equipment: FT-Catalytic Converter

Two examples of product distributions are given below, the first with iron catalyst, and the second with cobalt catalyst. The experiments have been carried out at the Technical University of Vienna. The reactions take place in a bench scale FT reactor (~250 ml reactor volume). The x-axis indicates the chain length, while the y-axis shows the percentage on weight basis.

The reactions with iron catalyst are conducted with 30 bars and 280 °C. The iron catalyst provides high selectivity in the important interval between C10 –C18, which means a high yield of diesel.

3/12/2007

http://www.zero.no/transport/bio/fischer-tropsch-reactor-fed-by-syngas

MinneFuel, LLC

Composition of Conceptual FT-Output Streams

Table 4. Equilibrium FT product gas yield sensitivity to pressure, xi and source gas										
		8	Source Gas	: Pure Syng	gas of H2/C0	D=2, Press	ure in bar			
250C	1	10	100	100	10	1	1	10	100	
CO	0.054	0.009	0.002	17.718	32.38	33.323	0.054	0.009	0.002	
H2	20.630	6.630	1.779	35.436	64.76	66.646	20.630	6.629	1.778	
CO2	12.127	8.424	7.132	0.000126	0.000069	0.000	12.129	8.428	7.140	
H2O	51.331	66.275	71.466	0.000003	0.000002	0.000	51.325	66.261	71.436	
CH3OH	0.048	0.086	0.130 ppm	46.84 in%	2.8595	0.031				
C4H10	15.846	18.634	19.564		single produ	ucts	15.863	18.672	19.644	
C6H14	0.012	0.028	0.057							
C3H8					21.551					
CO				1.795	6.330	6.713	0.064	0.013	0.003	
H2				54.774	66.611	67.119	18.288	5.445	1.402	
CO2				24.010	23.715	23.563	17.870	15.053	14.162	
H2O				8.081	2.753	2.599	55.954	69.848	74.220	
CH3OH		single prod	lucts	11.340	0.591	0.006				
C4H10		single prod	lucts				7.823	9.642	10.213	
					Source	Gas: Produ	ucer Gas			

* All calculations are for 250C and H2/CO=2, equil.compos. TL-07-Plant-BM-sp, U.Bonne, 21 Feb.'08

Conversion yield to CH3OH (methanol) is strongly pressure-dependent, or about >20x /decade The pressure-dependence of the yield for hydrocarbons is much weaker, e.g. for C4H10 (butane) The presence of CO2 and H2O (direct use of producer gas) reduces the yields of C4H10 by 2x Catalysis to both CH3OH and C4H10 reduces the yield of the former by ~106x The pressure-dependent yields for CH3OH and C4H10 cross over between 10 and 100 bar The above scenario may well change as temperature, H2/CO ratio and product mix change.

MinneFuel, LLC

Product Yield of Conceptual FT Output Streams

MinneFuel, LLC

Efficient Small-Plant Biomass-to-Methanol Conversion

SENSITIVITY ANALYSIS

Different BM Mat'l: xBM + yH2O >> CH3OH + (x-1)CO2 + 16.06 kcal/mol

ВM	Materials	x	У	Eff	Δ Hgas	Δ HFT	Δ Htot	$\Delta extsf{Hf}$	Materials
•		mol	mol	00		kca	al/mol		
CH	1.67 0.833	1.50	.75	46.51	35.27	-30.9	4.38	-38.5	cellulose
CH	2.00 0 1.0	1.50	.5	47.4	35.00	-30.9	4.10	-49.68	glucose
CH	1.90 0.178	1.08	.97	42.33	87.74	-30.9	56.84	-51.75	lignin
СН	1.64 0 .39	1.23	.99	45.28	46.96	-30.9	16.06	-22.66	BM=biomass(NREL)
CH	1.64 0 .39	1.23	.99	45.32	46.96	-30.9	16.06	-22.66	BM 820C Tgas
CH	1.64 0 .39	1.23	.99	45.09	46.96	-30.9	16.06	-22.66	BM 200C FT
CH	1.64 0 .39	1.23	.99	46.24	46.96	-30.9	16.06	-22.66	BM HXgf=60%
CH	1.64 0 .39	1.23	.99	46.46	46.96	-30.9	16.06	-22.66	BM HXFT=60%
СН	1.64 0 .39	1.23	.99	48.14	46.96	-30.9	16.06	-22.66	BM HXcb=90%
CH	1.64 0 .39	1.23	.99	46.25	46.96	-30.9	16.06	-22.66	BM pFT=500psia
СН	2.01 0 .39	1.15	.85	44.88	57.60	-30.9	26.70	-35.20	BM w/ H=2.01
CH	1.64 0 .83	1.51	.76	48.66	11.37	-30.9	-19.53	-22.66	BM w/ O=0.83

Reference Op. Conditions: Tgasfier = 920°C; TFT = 250°C pFT = 600 psia (~40 bar) HXcb = 80%; HXgf = 50%; HXFT = 50% BM (NREL) Material: CH_{1.64}O_{0.39}N_{0.23}S_{0.0035}

MinneFuel, LLC

Efficient Small-Plant Biomass-to-Methanol Conversion

CONCLUSIONS

- Each 1 Btu of produced methanol consumes 2.2 Btu of biomass feedstock, of which 0.96 Btu is converted to methanol, with the addition of 0.03 g of recycled water
- Each 1 gal of produced methanol consumes 13.5 lbs of biomass feedstock, of which 5.8 lbs are converted to methanol, with the addition of 0.4 gal of water, which is obtained from recovered condensates. This amounts to 148 gal methanol / ton of biomass.
- Such plant yield is 1.65x higher than the traditional corn-ethanol yield of 90 gal/ton (disregarding HV differences between these fuels for the moment), and would yield 3.3x more fuel/acre if both corn and stover were processed to fuel.

MinneFuel, LLC

Where do we go from here?

- Select gasification and GTL conversion system
- Identify development partners, as needed
- Leverage MN renewable resources and labor pool
- Prepare comprehensive business plan
- Iterate technical and economic models, scale up and cost-engineer "small plant"
- Verify performance of scaled up small plant
- Launch manufacture of "universal" small plants to minimize use of fossil, non-renewable fuels

Collaboration and Innovation

"IBM is re-inventing the way it innovates. At one time the tech giant was a true believer on go-italone R&D. The feeling was that if a technology wasn't invented by IBMers, it wasn't as good. Now the computer pioneer realizes that no matter how big an organization is, more smart people are going to work outside its walls than inside. So it courts R&D partners aggressively. 'We are the most innovative when we collaborate,' declares Chief Executive Samuel J.Palmisano".

THANK YOU ! ANY QUESTIONS?

p.18 of the Innovation Insert of Business Week issue of Sept.10, 2007 30

Biomass vs. Solar PV Energy Yield & Investm.

	\$inv/acre	\$inv/kW	W/acre	\$earn/y/acre	\$earn/y/\$inv
Biomass Plant + ag.cultiva	500	11,855	2,153	1,100	2.200
Biomass Plant 200 acres	1,250	29,639	1,054	685	0.548
BioMax25 Gasifier+Genera	itor	8,000			
Solar PV Cell			82,175	50,390	0.101
Solar PV Cell - GE in Portu	500,000	6,818	73,333	44,968	0.090
Ratio BioMass/PV Cell	~0.001	~2	~1/70	~1/27	~24/1

Biomass kWh earnings per acre may be 70x lower than PV, but return on \$- inv is 24x higher PV earnings per invested \$ may be 24x lower, but should require less labor after installation

MinneFuel, LLC

Developmental Equipment: Corn+Stover Harvester

Iowa State Developing Integrated Corn and Stover Harvester. A dual-stream, single-pass harvesting system to harvest corn and corn stover in two separate streams is being developed by Stuart Birrell et al, at Iowa State U (sbirrell@iastate.edu) sponsored by USDA-DOE and John Deere Co.. 31 Dec. 2006, see http://www.iastate.edu/~nscentral/news/06/dec/stover.shtml and http://thefraserdomain.typepad.com/energy/2006/12/iowa state deve.html#comment-72586652 **Left:** The Integrated Harvester chops stover into 2"-pieces, and the blower throws the chopped stover into a wagon. Dual harvesting speed is equal to a normal grain harvest when less than 50 % of the stover is collected, as shown at far right. When all of a field's stover is collected (see middle of right photo) harvest speeds are about half, but the goal is to get the speed to at least 80 % of a normal grain harvest, no matter how much stover is collected. Stover would be easier to transport and to store if its density could be increased from the normal range of 0.048 to 0.064 g/cm3 (3-4 lbs/ft3) to a range of 0.16 to 0.19 g/cm3 (10-12 lb/ft3).

Reprinted with permission from ISU/S.Birrell

Small Biomass Plant Energy Conversion Efficiencies-3

TOTAL BIOMASS ENERGY CONVERSION TO METHANOL

хBМ		+ yH2O >> CO + 2H	2 +(x-1)CO2 + 46.96 kcal/mol
CO		+ 2H2 >> CH3OH	- 30.90 kcal/mol
хBМ		+ yH ₂ O >> CH ₃ OH	+ (x-1)CO ₂ + 16.06 kcal/mol
4 02011	~		1.0.0200 1.10.00 kaal/mal

1.23CH_{1.64}O_{0.39} +0.99H₂O >> CH₃OH + 0.23CO₂ + 16.06 kcal/mol

Fuel & Formula MW HHV LHV Hform kcal/mol

Glucose C6H12O6 30.03 -112.17 -102.42 -49.68 Xylose C5H10O5 30.03 -112.34 -102.59 -49.51 Cellulose C6H10O 27.02 -111.98 -103.86 -38.57 Xylan C5H8O4 26.42 -112.16 -104.36 -36.13 Lignin C7.3H13 16.78 -106.84 -97.56 -51.76 Methanol CH3OH 32.00 -172.30 -152.80 -57.35 Biomass CH1.64O 23.24 -126.99 -119.00 -22.66

44.34 % - Plant Conversion Eff.- Total Overall

- 104.4 % Maximum Plant Conversion Eff., based on only prod/feed LHV ratio
- 74.51 % same but w/ indirect gasif.reaction energy, incl. 80 % HXeff
- 69.79 % same but w/ CO+H2+CO2 heat up to 920 C + 50 % HT rcv
- 75.70 % same but w/ recovery of 50 % from exothermic FT reactor
- 64.34 % same but w/ ad.compr.(80% eff, 89.5 to 600psia),incl. 25% el.gen
- 44.34 % same but w/ 20% est.loss for syngas + prod.cleaup & FT recycl.

MinneFuel, LLC